Assessing Annual Nitrate Loads and Concentration Indicators: Part 1. Impact of Sampling Frequency
نویسندگان
چکیده
The objectives of this study are to evaluate the uncertainty in annual nitrate loads and concentrations (such as annual average and median concentrations) as induced by infrequent sampling and by the algorithms used to compute fluxes. A total of 50 watershed‐years of hourly to daily flow and concentration data gathered from nine watersheds (5 to 252 km2) in Brittany, France, were analyzed. Original (high frequency) nitrate concentration and flow data were numerically sampled to simulate common sampling frequencies. Annual fluxes and concentration indicators calculated from the simulated samples were compared to the reference values calculated from the high‐frequency data. The uncertainties contributed by several algorithms used to calculate annual fluxes were also quantified. In all cases, uncertainty increased as sampling intervals increased. Results showed that all the tested algorithms that do not use continuous flow data to compute nitrate fluxes introduced considerable uncertainty. The flow‐weighted average concentration ratio method was found to perform best across the 50 annual datasets. Analysis of the bias values suggests that the 90th and 95th percentiles and the maximum concentration values tend to be systematically underestimated in the long term, but the load estimates (using the chosen algorithm) and the average and median concentrations were relatively unbiased. Great variability in the precision of the load estimation algorithms was observed, both between watersheds of different sizes and between years for a particular watershed. This has prevented definitive uncertainty predictions for nitrate loads and concentrations in this preliminary work, but suggests that hydrologic factors, such as the watershed hydrological reactivity, could be a key factor in predicting uncertainty
منابع مشابه
Temporal variability of nitrate transport through hydrological response during flood events within a large agricultural catchment in south-west France.
The temporal variability of nitrate transport was monitored continuously in a large agricultural catchment, the 1110km(2) Save catchment in south-west France, from January 2007 to June 2009. The overall aim was to analyse the temporal transport of nitrate through hydrological response during flood events in the catchment. Nitrate loads and hysteresis were also analysed and the relationships bet...
متن کاملSampling considerations for establishment of baseline loadings from forested watersheds for TMDL application.
Five methods for estimating maximum daily and annual nitrate (NO3) and suspended sediment loads using periodic sampling of varying intensities were compared to actual loads calculated from intensive stormflow and baseflow sampling from small, forested watersheds in north central West Virginia to determine if the less intensive sampling methods were accurate and could be utilized in TMDL develop...
متن کاملEffect on nitrate concentration in stream water of agricultural practices : I. Annual nitrogen budgets
The hydrological and biogeochemical monitoring of catchments has become a common approach for studying the effect of the evolution of agricultural practices on water resources. In numerous studies, the catchment is used as a “mega-lysimeter” to calculate annual input-output budgets. However, the literature reflects two opposite interpretations of the trends of nitrate concentration in streamwat...
متن کاملIllinois River Nitrate-Nitrogen Concentrations and Loads: Long-term Variation and Association with Watershed Nitrogen Inputs.
The Illinois River is a major contributor of nitrate-N to the Mississippi River and the Gulf of Mexico, where nitrate is a leading cause of summertime benthic hypoxia. Corn-soybean production on tile-drained land is a leading source of nitrate-N in this river system, in addition to municipal wastewater discharge. We calculated annual nitrate-N loads in the Illinois River at Valley City from 197...
متن کاملPotential Benefits of Wetland Filters for Tile Drainage Systems: Impact on Nitrate Loads to Mississippi River Subbasins
The primary objective of this project was to estimate the nitrate reduction that could be achieved using restored wetlands as nitrogen sinks in tile-drained regions of the upper Mississippi River (UMR) and Ohio River basins. This report provides an assessment of nitrate concentrations and loads across the UMR and Ohio River basins and the mass reduction of nitrate loading that could be achieved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010